School of Engineering, Computing and Mathematics

MEng (Hons) Robotics

UCAS tariff 128 Contextual offers
A contextual offer is an offer to study at university that takes personal circumstances that may affect grades into account.
UCAS course code H676
Institution code P60
Duration

4 years

(+ optional placement)
Course type

Full-time

Study location Plymouth

The MEng Robotics course leads to a high-level qualification which is recognised by The Institution of Engineering and Technology (IET), providing a fast route to Chartered Engineer status. The course introduces fundamental concepts in the area of robotics, as well as specialist topics, preparing students for future careers in industry. It digs deep into the robotic technologies that are shaping the future and adopts a hands-on approach which students develop in our specialist laboratories.

Careers with this subject

Discover employment and further study opportunities that you could consider once you graduate with a robotics degree.

Key features

  • Four year integrated masters programmes .
  • Our robotics courses have a large number of laboratory practical sessions embedded in their modules, and this is a strong feature of the robotics teaching in Plymouth. This ensures that you can consolidate theory learned in lectures using real practical tasks, making your understanding of topics much more concrete.
  • Students in engineering, science and the arts have access to a range of specialist equipment and innovative laboratories in our new engineering and design facility .
  • Accredited by the Institution of Engineering and Technology on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer.
  • Undertake a major robotics design and implementation in your final project, showcasing your technical and managerial skills.
  • Capitalise on the opportunity to take a work placement in your second or third year, putting your robotics skills into action in the real world.
  • Students are able to get involved with industrial partners for their project work.
  • Students can undertake industrial placements and summer internships with researchers at the University.
  • Draw on unique opportunities to engage in world-class robotics research, and in a variety of activities.

Course details

  • Year 1

  • In your first year you'll learn through doing, developing your knowledge and practical problem-solving skills in our dedicated robotics and electronics laboratories. From engineering mathematics to analogue and digital electronics, you’ll build up the essential foundations for understanding robotic systems. Group project work will help you develop your communication skills and you'll learn structured design procedures for hardware and software all brought together in an integrating robotics project.

    Core modules

    BPIE112
    Stage 1 Electrical/Robotics Placement Preparation 0 credits

    This module is aimed at students who may be undertaking an industrial placement in the third year of their programme. It is designed to assist students in their search for a placement and in their preparation for the placement itself.

    ELEC141
    Analogue Electronics 20 credits

    This module provides an overview of analogue circuit characterisation, analysis and design, linking theory to practice. It will examine how common analogue systems are constructed from elementary components.

    60% Examinations

    40% Coursework

    ELEC142
    Digital Electronics 20 credits

    This is a foundation module in digital electronics and computer control, which introduces digital devices and provides a background in the principles, design and applications of combinational and sequential logic circuits.

    60% Examinations

    40% Coursework

    ELEC144
    Electrical Principles and Machines 20 credits

    This module gives an introduction to the electrical properties of materials, capacitance, Inductance, and electromagnetism. Basic circuit principles and their application in dc and ac circuit analysis are then applied to electrical machines, transformers and energy conversion.

    60% Examinations

    40% Coursework

    PROJ100
    Embedded System Design and Build 40 credits

    The module enables students to work collectively to build prototype solutions to real-world problems using both software and hardware. This will include development and verification skills in both hardware and software.

    100% Coursework

    ENGR104
    Engineering Mathematics 20 credits

    This module provides students with a number of fundamental mathematical skills, and techniques, which are essential for the analysis of engineering problems.

    50% Coursework

    50% Examinations

  • Year 2

  • Throughout your second year, you will develop a greater understanding of underlying theoretical and practical principles of robotic systems. You will make use of standard software tools for design and simulation and control of robots which are essential preparation for a placement or your final year individual project

    Core modules

    BPIE212
    Stage 2 Electrical/Robotics Placement Preparation 0 credits

    This module is aimed at students who may be undertaking an industrial placement in the third year of their programme. It is designed build on the Level 1 module (BPIE111) and to assist students in their search for a placement and in their preparation for the placement itself.

    MATH237
    Engineering Mathematics and Statistics 20 credits

    This module provides an introduction to mathematical and statistical methods that are important in the study of electronic and communications engineering. The mathematical techniques (transforms) are central to the study of linear, time-invariant systems. As well as introducing descriptive statistics, basic probability distributions, the module also considers the more advanced topics of reliability and quality control.

    80% Examinations

    20% Coursework

    ROCO219
    Control Engineering 20 credits

    This module introduces basic concepts in how to control systems that have dynamics. This can involve making an unstable system stable, like balancing a Segway transporter to ensure it always remains upright. Or to get a system to follow a desired input and reach the desired goal. For example, controlling a robot arm so it moves directly to a target location without oscillating or overshooting.

    60% Examinations

    40% Coursework

    ROCO224
    Introduction to Robotics 20 credits

    This module covers the theory and implementation of robotics, for both physical and simulated robots. Industry standard robot kinematics and simulations are used to analyse different robot designs, and are practically experienced through commercial tools. The basic mechanical principles for building physical robots are also covered, as well as the algorithms required for planning and generating movement.

    60% Examinations

    40% Coursework

    PROJ200
    Real Time Systems Project 40 credits

    The module enables students to build robust and scalable real-time solutions to real-world problems using both Microcontroller and FPGA technologies. This will include both hardware and firmware development skills.

    50% Coursework

    50% Practicals

    ROCO226
    Sensors and Actuators for Robotic Systems 20 credits

    A systems level study of the principles and design requirements of modern electronic motor systems. Operating performances of various electrical machines are characterised in four quadrants and the requirements of the corresponding power electronic converter topologies are examined. Control strategies are investigated in terms of drive system performance.

    60% Coursework

    40% Examinations

  • Optional placement year

  • An optional work placement experience gives you the opportunity to put theory into practice, grow your understanding of robotics in the real world and showcase your growing expertise. We can help you find industrial placement opportunities in the UK and abroad. Placements will complement your studies with real-world industrial experience which can lead to final year sponsorship. Many of our graduates are offered permanent jobs with their placement company.

    Core modules

    BPIE332
    Electrical Industrial Placement

    A 48-week period of professional training spent as the third year of a sandwich programme undertaking an approved placement with a suitable company. This provides an opportunity for the student to gain relevant industrial experience to consolidate the first two stages of study and to prepare for the final stage and employment after graduation.

  • Year 4

  • In the fourth year, you will learn additional more advanced concepts and topics in the field of robotics. You will also have the opportunity to make use of the knowledge you have consolidated this far and apply it to your individual project, which also provides a means to develop and practice your presentation and communication skills which are also vital for your future robotics career.

    Core modules

    ELEC351
    Advanced Embedded Programming 20 credits

    The module aims to develop programming skills in embedded programming, by making use of advanced features of high-level programming languages and by deepening the knowledge of modern programming techniques in embedded systems. The module has a strong practical bias where students are required to solve various problems by programming existing microcontroller hardware.

    60% Coursework

    40% Examinations

    PROJ300
    Individual Project 40 credits

    Investigate problems from industry or current research, define the problem boundaries, investigate possible solutions and present your results. You’ll have the chance to demonstrate a wide range of skills in project management, ethics, IP, research, critical thinking, engineering decisions, hardware, electrical/electronic and mechanical, design and simulation, software implementation, schematic capture and testing.

    70% Coursework

    30% Practicals

    ROCO321
    Computer Vision 20 credits

    The module will provide an advanced knowledge of artificial vision systems for interactive systems guidance and control. It will be underpinned by current theoretical understanding of animal vision systems.

    100% Coursework

    ROCO318
    Mobile and Humanoid Robots 20 credits

    This module examines the technology, control and modelling of mobile and humanoid robot systems. Mathematical analysis and computational algorithms underpin practical considerations and case studies.

    70% Examinations

    30% Coursework

    Optional modules

    ELEC345
    High Speed Communications 20 credits

    A circuit and system design module covering analogue and high frequency techniques and their place in modern communications systems.

    80% Examinations

    20% Coursework

    ROCO351
    Machine Learning for Robotics 20 credits

    This module introduces basic concepts in the area of machine learning, which is a rapidly expanding field that allows computers to learn how to behave and perform complex tasks without being explicitly programmed to do them. Applications range from signal processing, image recognition through to the control of robotics systems.

    50% Coursework

    50% Examinations

  • Final year

  • The final year of the MEng programme introduces more specialist topic in robotics and a major robotics project.

    Core modules

    PROJ515
    MEng Project 60 credits

    This group project involves an in-depth study of a complex real-world problem originating from industry, commerce or research. It could include theoretical, computational and experimental work in addition to a critical literature survey and also involves the design and build of a prototype to support the claims made in the project execution plan.

    95% Coursework

    5% Practicals

    ELEC520
    Distributed and Interactive Communications Systems 20 credits

    In this module, students will develop applications involving interconnected hardware devices and software capabilities. Devices include both embedded and networked computers. Capabilities include sensor data acquisition, actuator control, and behaviour generation. The module will cover both theory and practical work, including management of code complexity, and dealing with real-time and reliability issues.

    70% Coursework

    30% Examinations

    ROCO507Z
    Advanced Robot Design and Prototyping 20 credits

    This module aims to give the students a theoretical and practical understanding of designing and building advanced robot assemblies and mechanisms, through engineering and bioinspired approaches.

    50% Coursework

    50% Examinations

    COMP5012
    Computational Intelligence 20 credits

    This module examines the state-of-the-art in computational intelligence, focussing on evolutionary computation, swarm intelligence, fuzzy systems and Bayesian and Markov networks. Students will learn about the underlying theory behind these techniques and gain practical experience of implementing them. CI approaches will be discussed against the backdrop of various industrial problems that they are suited to solving.

    100% Coursework

Course-specific academic regulations

This course has unique rules relating to:
  • Passing a module
View the full regulations for this course
The modules shown for this course are those currently being studied by our students, or are proposed new modules. Please note that programme structures and individual modules are subject to amendment from time to time as part of the University’s curriculum enrichment programme and in line with changes in the University’s policies and requirements.

Entry requirements

UCAS tariff

128

Contextual offers: Typically, the contextual offer for this course is 8 points below the advertised tariff. A contextual offer is an offer to study at university that takes into account individual circumstances that are beyond your control, and that can potentially impact your learning and your exam results, or your confidence in applying to university.

Check your eligibility for a contextual offer

A level
To include B at A level Mathematics and grade B in a second relevant subject. Relevant subjects include Chemistry, Computing, Design & Technology, Electronics, Engineering, Physics, Further Maths, Pure Maths, Use of Maths and Statistics.
International Baccalaureate
30 to 34 points overall to include 5 in Higher Level Mathematics and 5 in a second relevant Higher Level subject. English and Mathematics must be included.
BTEC RQF National Extended Diploma/QCF Extended Diploma
DMM – DDM in a relevant Science, Engineering, or Technology subject, to include a Distinction in relevant Mathematics units.
If you hold a BTEC qualification it is vital that you provide our Admissions team with details of the exact modules you have studied as part of the BTEC. Without this information we may be unable to process your application quickly and you could experience significant delays in the progress of your application to study with us. Please explicitly state the full list of modules within your qualification at the time of application.
Irish Leaving Certificate
120 to 136 UCAS tariff points, including H3 in Maths and H3 in a second relevant science subject. GCSE equivalent English and Maths accepted within.
SQA Advanced Higher
120 to 136 UCAS tariff points, including grade B in Advanced Higher Maths and grade B in a second relevant Advanced Higher subject. GCSE equivalent English and Maths accepted within.
All Access courses
The tutor will look at Access on an individual basis. Please contact the admissions team at admissions@plymouth.ac.uk.
Students may also apply for the BEng (Hons) Robotics with Foundation Year .
We welcome applicants with international qualifications. To view other accepted qualifications please refer to our tariff glossary .

Fees, costs and funding

Student 2024-2025 2025-2026 *
Home £9,250 £9,250
International £18,100 £18,650
Part time (Home) £770 £770
Full time fees shown are per annum. Part time fees shown are per 10 credits. Please note that fees are reviewed on an annual basis. Fees and the conditions that apply to them shown in the prospectus are correct at the time of going to print. Fees shown on the web are the most up to date but are still subject to change in exceptional circumstances. More information about fees and funding.

* UK Government announcement on tuition fees

On Monday 4 November 2024 the UK Government announced a proposal to increase tuition fees for home undergraduate students from £9,250 to £9,535 per annum from September 2025 onwards. The University of Plymouth intends to apply this new fee from September 2025. However, implementation of this increase will be subject to Parliamentary procedure. The University will give further details to both prospective and current students as soon as more information becomes available.

IET Awards and Scholarships

All our electronics and robotics courses are accredited by the Institution of Engineering and Technology (IET); any student embarking on our courses are eligible to apply for a number of IET engineering scholarships. Amounts can vary between £1,000 and £3,000 per annum, and closing dates for applications are usually at the end of June. For more information on the different scholarships available, details on how to apply and confirmed closing dates for applications, please visit IET Awards and Scholarships.

Undergraduate scholarships for international students

To reward outstanding achievement the University of Plymouth offers scholarship schemes to help towards funding your studies.

Additional costs

This course is delivered by the Faculty of Science and Engineering and more details of any additional costs associated with the faculty's courses are listed on the following page: Additional fieldwork and equipment costs .

Tuition fees for optional placement years

The fee for all undergraduate students completing any part of their placement year in the UK in 2024/2025 is £1,850.
The fee for all undergraduate students completing their whole placement year outside the UK in 2024/2025 is £1,385.
Learn more about placement year tuition fees

The Tamar Engineering Project

The Tamar Engineering Project is for ambitious students who want to embark on a career in engineering and who have shown potential for high academic achievement at A level, but whose background or personal circumstances may be a barrier to university study.
Successful applicants will receive:
  • £3,000 per annum towards living costs for the duration of the taught element of their degree (usually three years)
  • £1,500 fee waiver per annum
  • one-to-one mentoring from an industry expert.

How to apply

All applications for undergraduate courses are made through UCAS (Universities and Colleges Admissions Service).
UCAS will ask for the information contained in the box at the top of this course page including the UCAS course code and the institution code.
To apply for this course and for more information about submitting an application including application deadline dates, please visit the UCAS website.
Support is also available to overseas students applying to the University from our International Office via our how to apply webpage or email admissions@plymouth.ac.uk.
 

Benefit from specialist facilities

Our robotics facilities and specialist laboratories enable a hands-on approach to learning.
As a robotics student, you'll have use of both custom in-house and industrial robots during your studies. We also have a range of robots and platforms that can be used for student projects, including robot dogs and drones.
Robot platform outside Babbage building

Student spotlight: Estilla Hefter

Having always been drawn to robotics, it became my passion when I realised it could be used to help people.
Social robots have the capabilities to raise people's self-esteem, make them feel more connected, and improve their welfare.
On placement, I developed a system to help children learn how to read and study another language. My projects are now used by the company.
Estilla Hefter, Plymouth Pioneers

Student spotlight: Becky Harding

As part of her final year project, Becky collaborated with fellow students to design and produce the Wearable Enhanced Awareness System.
"The idea of this system is that, for example, you can be walking down the street alone at night and, using radar and lidar technology, it will detect if there is another human approaching you, or a bicycle or something like that. The aim is to reduce knife crime, mugging, accidents, these kinds of things."

Showcase your work

Each year, students from robotics are involved in our Student Showcase event.
This event offers students an opportunity to demonstrate their passion to lecturers and their fellow students, as well as to industry professionals and potential employers.
"I've had the opportunity to meet multiple people in the industry, all of them have seemed very interested in my project which was a great relief as the nature of my project is quite niche and I was curious about the actual industry applications"
 

Support for students

As well as support you'll receive from academic staff, we have a team of technicians who assist you with projects and research.
Senior Robotics Technician, Jake, talks about his work with students.
"I would say be as ambitious as you want, you can almost guarantee you can make it, you just have to be determined"

Apply to the Tamar Engineering Project

Open for applications to ambitious students who want to embark on a career in engineering and who have shown potential for high academic achievement at A level, but whose background or personal circumstances may be a barrier to university study. Successful applicants will receive:
  • £3,000 per annum towards living costs for the duration of the taught element of their degree (usually three years)
  • £1,500 fee waiver per annum
  • one-to-one mentoring from an industry expert.

Applications close 30 June 2024

Meet some of your lecturers

Work placements

You'll have the option to undertake a work placement in your third year. A placement year is an excellent way to gain a competitive edge, it will set you up for when the graduate schemes launch and help you make better career decisions.

Where could robotics take you?

Learn more about the diverse range of successful career pathways our robotics graduates take after completing the course

Matthew Preston

Matthew Preston
Matthew works as a Robotics Engineer for MSubs Ltd

Jane Sheard

Jane Sheard
Jane has been working as a graduate systems engineer at Chess Dynamics

Joel Gibbard, with the robotic hand he made for his final year project

Joel Gibbard
Joel works as an Applications Engineer at National Instruments

 
*These are the latest results from the National Student Survey. Please note that the data published on Discover Uni is updated annually in September.