Project Description
The rapid expansion of floating offshore wind (FLOW) infrastructure into deeper, seasonally stratified shelf seas like the Celtic Sea could have profound consequences for ocean dynamics, such as stratification and mixing, through impacts on ocean fronts, and hence for key ecosystem drivers like phyto- and zooplankton, forage fish, and ultimately, top predators and fisheries. Ocean fronts form at the interface of tidally well-mixed and seasonally stratified waters, providing biological hotspots. Despite their recognized importance, frontal habitats remain poorly studied and FLOW impacts are virtually unknown, highlighting the imperative for innovative monitoring approaches.
This project will utilise autonomous underwater vehicles (AUVs), equipped with novel sensors, and high-resolution satellite remote sensing to understand FLOW interactions with ocean dynamics in the Celtic Sea. NERC’s Autosub Long-Range 1500 AUV will collect data on shelf-sea dynamics (stratification, currents, turbulence), biogeochemistry (oxygen, nutrients), phyto- and zooplankton diversity and abundance, and forage fish distribution. These measurements will be compared with satellite data on thermal and ocean colour fronts, providing insights into their location, timing, structure and persistence in relation to FLOW.
This project can be tailored to the student's interests, focusing on either physical oceanographic or lower trophic ecological dynamics. Training includes processing of satellite remote sensing data for front detection and the extraction of physical and/or biological data from multi-week AUV missions. Key skills gained include interpreting and linking multiple AUV-derived data streams, such as: turbulence, mixing and stratification; plankton imaging and classification; fisheries acoustics; and biogeochemistry. These skills will prepare the student for a career in marine science or environmental monitoring.