Organised by Dr Nicki Whitehouse (School of Geographical, Earth and Environmental Sciences), Dr Louise Firth and Professor Dave Bilton (School of Biological and Marine Sciences), this event showcased ecological research at the University across aquatic (freshwater, marine) and terrestrial systems.
Our aim was to improve our understanding of species responses and their associated natural and managed communities and ecosystems to environmental and human-induced change, linking both long and short-term processes and drawing on neo and palaeo-ecological approaches.
Anthropogenic processes are now leading to major changes in our environment, and understanding how species, communities and ecosystems respond to environmental change on macro-evolutionary scales is instrumental in understanding the processes that govern modern global biodiversity. Despite this, a long-term perspective is often lacking from contemporary thinking on global climate change. We know that ecosystems are dynamic, and change is normal, in response to both internal processes and changes in the external environment. The rates of processes and varied lifespans mean that ecological dynamics play out over a range of spatial and temporal scales, including those well beyond an organismal lifetime. Ecologists are developing increasing awareness that the time scales needed to understand the true effects of ecological and environmental change extend over decades, centuries and millennia, driven in part by the ‘planet-wide experiment’ of current climate change and the accumulation of long-term monitoring data over the last few decades.
Even though the Earth is entering a period of unprecedented climate change, this is not the first time ecosystems have faced disruptions that have had global impacts, such as the cycles of glacials and interglacials through the Pleistocene, the extinction of the megafauna at the end of last ice age and the transition to early agriculture during the Holocene being some of the best examples. To understand how disruptive processes affect biodiversity and ecological communities needs efforts focused on deciphering the impact of ecological change on both global and geological scales, from the terrestrial, aquatic and marine realm. Moreover, understanding how long and short-term changes are driven by geomorphological and biotic processes and major climatic fluctuations is important for determining the evolutionary pressures acting within species, populations and communities.
While the focus of the meeting was ecological, we were also interested in exploring how long- and short-term ecological approaches may inform research into socio-ecological systems and ecosystem services and used the meeting to interact with external stakeholders concerned with species responses to climate change.
This event was also affiliated with a proposed new Palaeoecology Special Interest Group (SIG) of the British Ecological Society. The proposed new SIG is intended to improve communication between neo- and paleo-ecologists and other SIGs (for example, macro-ecologists). Details of the proposed SIG were available at the meeting.
Keynote speakers
Two keynote speakers set the research context: Professor Iain Colin Prentice (with Sandy P Harrison and Maria Dance), from Imperial College London, on 'The velocity of past climate changes and plant responses' and Dr Alejandro Ordonez, from Queen’s University Belfast and the University of Aarhus, Denmark, on 'The rising novelty in ecosystems and climates: looking to the past to understand a no-analogue future'. Further details of our keynotes may be found below.
Contact nicola.whitehouse@plymouth.ac.uk for queries.