The research approach comprises three main elements, namely, beach monitoring, field experiments and numerical modelling. Considerable emphasis will be placed on assessing the implications of the research for beach safety and tools will be developed to assist the RNLI with their lifeguarding duties.
Beach monitoring
Field experiments
We will conduct a 6-week field campaign on two high-wave, large-tidal beaches along the north Cornish coast where mass rescue events of upwards of 150 people per beach have required simultaneous rescue due to rip currents. During each of these campaigns, we will install several instruments in the surf zone that will measure waves, tides and rip currents at fixed locations.
In addition, we will use a large number of specialist drifters that measure the complete rip current pattern. The drifters will be released in the surf zone and will move according to the nearshore current pattern. Their location will be continuously monitored (using GPS) and the data from the drifters will provide useful information not only on the strength of the rip current, but also on the type of flow pattern. The drifters are designed to behave like human beings and their movement therefore mimics that of passive bathers.
Rip current experiments will include accurate measurements of the morphology and bathymetry, comprehensive water level and velocity measurements within the rip channel and neighbouring bars, and offshore directional wave measurements. The key quantities to be measured in the proposed field experiments include:
- Regular inter- and sub-tidal bathymetry collected by RTK-GPS and echo sounder surveys.
- Spatial patterns of wave energy dissipation, and radiation stress and water surface elevation gradients across the sub- and intertidal bar morphology.
- Single point measurements and vertical profiles of the Eulerian flow velocity both within
- the rip and feeder channels and over the surrounding bars.
- Lagrangian sub-surface drift across the cell circulation system using GPS-tracked drifters (Figure 6).
- Seaward boundary conditions to force surf zone circulation models.
Numerical modelling
The work in DRIBS will be underpinned by numerical modelling throughout all phases of the work and will be supported by the Visiting Researchers (Prof Dano Roelvink and Dr Ap van Dongeren). The key numerical tool to be used is XBeach, a recently developed, process-based public-domain model that is capable of resolving the hydrodynamic processes most relevant to rip current dynamics (e.g., wave shoaling, refraction and energy dissipation, wave-current interaction; longshore and rip current velocities, infragravity wave motion and tidal translation; Roelvink et al., in press). XBeach will be used to plan and optimise the instrument deployment during the field experiments by running the model prior to the field experiments using actual bathymetry and expected wave/tide conditions. After the field experiments, XBeach will be validated and calibrated using the field data and the model will be implemented to help identify the most important processes in driving the rip circulation through comparison between field data and model results obtained using different model parameters and settings. XBeach will also be used to run scenario type simulations over individual tidal cycles using idealised beach morphology (e.g., subdued bar, pronounced bar, low-tide bar, mid-tide bar, etc) and varying wave/tide conditions to identify when and under what conditions rip currents are particularly strong and also what the character of the rip circulation is. The model output will be condensed to provide a simple diagnostic look-up-type tool (e.g., set of charts/tables) for daily use by beach lifeguards based on prevailing conditions.
The project also aim to develop innovative data-model assimilation tools to develop a decision-support system (DSS) with which rip current hazards and associated risk can be predicted several days in advance. Rip risk predictions developed in DRIBS will be based on a fully validated model outputs and bathymetry, and will cover several rip systems (Figure 1). Such information contributes significantly to planning and operational aspects of RNLI lifeguarding activities.