2024
Courtman M, Kim D, Wit H, Wang H, Sun L, Ifeachor E, Mullin S, Thurston M. (2024) Deep Learning Detection of Aneurysm Clips for Magnetic Resonance Imaging Safety.
J Imaging Inform Med. doi: 10.1007/s10278-023-00932-8.
https://doi.org/10.1007/s10278-023-00932-8Oralbayeva N, Aly A, Sandygulova A, Belpaeme (2024) T Data-Driven Communicative Behaviour Generation: A Survey,
ACM Transactions on Human-Robot Interaction, 10.1145/3609235.
https://doi.org/10.1145/3609235Zogaan, WA, Mehrbakhsh Nilashi, Hossein Ahmadi, Rabab Ali Abumalloh, Mesfer Alrizq, Hamad Abosaq, Abdullah Alghamdi (2024). A Combined Method of Optimized Learning Vector Quantization and Neuro-Fuzzy Techniques for Predicting Unified Parkinson's Disease Rating Scale Using Vocal Features,
MethodsX, 5 January, 102553.
https://doi.org/10.1016/j.mex.2024.1025532023
Alsayat A, Ahmadi H (2023). A Hybrid Method Using Ensembles of Neural Network and Text Mining for Learner Satisfaction Analysis from Big Datasets in Online Learning Platform.
Neural Processing Letters, 55 (3267–3303).
https://doi.org/10.1007/s11063-022-11009-yArji G, Ahmadi H, Avazpoor P, Hemmat M, (2023). Identifying resilience strategies for disruption management in the healthcare supply chain during COVID-19 by digital innovations: A systematic literature review.
Informatics in Medicine Unlocked, 38 101199.
https://doi.org/10.1016/j.imu.2023.101199Burnett, B, Zhou, SM, Brophy, S, Davies P, Ellis P, et al (2023). Machine Learning in Colorectal Cancer Risk Prediction from Routinely Collected Data: A Review.
Diagnostics 13, 301.
https://doi.org/10.3390/diagnostics13020301Cullinan MF, Scott R, Linogao J, Bradwell H, Cooper L & McGinn C (2023) Development and Demonstration of a Wireless Ultraviolet Sensing Network for Dose Monitoring and Operator Safety in Room Disinfection Applications.
Sensors 23, (5) 2493-249.
https://doi.org/10.3390/s23052493Longo E, Burnett B, Bauermeister S, Zhou SM (2023). Identifying dynamic patterns of polypharmacy for patients with dementia from primary care electronic health records: A machine learning driven longitudinal study.
Ageing and Disease, April, 14(2): 548~559.
https://doi.org/10.14336/AD.2022.0829Nilashi M, Abumalloh RA, Ahmadi H, Samad S, Alghamdi A, Alrizq M, Alyami S, Nayer FK (2023). Electroencephalography (EEG) eye state classification using learning vector quantization and bagged trees.
Heliyon. 2023 Apr 5;9(4):e15258.
https://doi.org/10.1016/j.heliyon.2023.e15258Nilashi M, Ali R, Samad S, Minaei-Bidgoli B, Thi HH, Alghamdi OA, Ismail MY, Ahmadi H (2023). The Impact of Multi-Criteria Ratings in Social Networking Sites on the Performance of Online Recommendation Agents.
Telematics and Informatics. January; 76: 101919.
https://doi.org/10.1016/j.tele.2022.101919Nilashi, M, Rabab Ali, Sarminah Samad, Behrouz Minaei-Bidgoli, Ha Hang Thi, OA Alghamdi, Muhammed Yousoof Ismail, Hossein Ahmadi (2023). The Impact of Multi-Criteria Ratings in Social Networking Sites on the Performance of Online Recommendation Agents.
Telematics and Informatics Volume 76, January, 101919.
https://doi.org/10.1016/j.tele.2022.101919Omisade O, Gegov A, Zhou SM, Good A, Sengar S, Liu B, Adedeji T, and Toptan C (2023). Explainable Artificial Intelligence and Mobile Health for Treating Eating Disorders in Young Adults with Autism Spectrum Disorder based on the Theory of Change: A mixed method protocol. In: Bhateja, V., Carroll, F., Tavares, J.M.R.S., Sengar, S.S., Peer, P. (eds)
Intelligent Data Engineering and Analytics. FICTA 2023. Smart Innovation, Systems and Technologies, vol 371. Springer, Singapore.
https://doi.org/10.1007/978-981-99-6706-3_3Qayyum, A., Loizou, M., et al. (2023). SEGCROP: Segmentation-based dynamic cropping of endoscopic videos to Address label leakage in surgical tool detection.
20th IEEE International Symposium on Biomedical Imaging (ISBI 2023).
https://doi.org/10.1109/isbi53787.2023.10230822Rodríguez-Espíndola O, Ahmadi H, Gastélum-Chavira D, Ahumada-Valenzuela O, Chowdhury S, Kumar Dey P, Albores P. (2023), Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation,
Socio-Economic Planning Sciences, Volume 89, 101669.
https://doi.org/10.1016/j.seps.2023.101669Zhou SM, Baines, R, Roberts E, Hannon P, Ashby S, Chatterjee A, Sen A, Laugharne R, Shankar R (2023). Analysing Patient-Generated Data to Understand Behaviours and Characteristics of Childbearing Women with Epilepsy, Seizure
- European Journal of Epilepsy, 108:24-32.
https://doi.org/10.1016/j.seizure.2023.04.008Zhou, SM, Baines R, Roberts E, Hannon P, Ashby S, Chatterjee A, Sen A, Laugharne R, Shankar, R (2023). Analysing Patient-Generated Data to Understand Behaviours and Characteristics of Childbearing Women with Epilepsy.
Seizure - European Journal of Epilepsy, 108(2023) 24-32.
https://doi.org/10.1016/j.seizure.2023.04.0082022
Ahmadi N, Nilashi M, Minaei-Bidgoli B, Farooque M, Samad S, Aljehane NO, Zogaan WA, Ahmadi H (2022). Eye State Identification Utilizing EEG Signals: A Combined Method Using Self-Organizing Map and Deep Belief Network.
Scientific Programming, Feb 28, 2022.
https://doi.org/10.1155/2022/4439189Almowil Z, Zhou SM, Croxall J and Brophy S. (2022). Concept libraries for repeatable and reusable research: a qualitative study exploring the needs of users.
JMIR Human Factors, 2022 Mar 15;9(1):e31021.
https://doi.org/10.2196/31021Giorgi I, Tirotto FA, Hagen O, Aider F, Gianni M, Palomino M & Masala GL (2022). Friendly But Faulty: A Pilot Study on the Perceived Trust of Older Adults in a Social Robot.
IEEE Access 10, 92084-92096.
https://doi.org/10.1109/access.2022.3202942Haynes C, Palomino MA, Stuart L, Viira D, Hannon F, Crossingham G & Tantam K (2022) Automatic Classification of National Health Service Feedback.
Mathematics 10, (6).
https://doi.org/10.3390/math10060983Huo L, Bai L, Zhou SM (2022). Automatically Generating Natural Language Descriptions of Images by A Deep Hierarchical Framework.
IEEE Transactions on Cybernetics, 52(8),7441-7452.
https://doi.org/10.1109/tcyb.2020.3041595Khan A, Milne-Ives M, Meinert E, Iyawa GE, Jones RB & Josephraj AN (2022). A Scoping Review of Digital Twins in the Context of the Covid-19 Pandemic.
Biomedical Engineering and Computational Biology 13:11795972221102115.
https://doi.org/10.1177/11795972221102115Milne-Ives M, Fraser L, Khan A, Walker D, van Velthoven MH, May J, Wolfe I, Harding T & Meinert E (2022). Life.course digital T.wins – I.ntelligent M.onitoring for E.arly and continuous intervention and prevention (LifeTIME): Proposal for a proof-of-concept study.
JMIR Research Protocols 11 (5).
https://doi.org/10.2196/35738Milne-Ives M, Selby E, Inkster B, Lam C, Meinert E. (2022). Artificial intelligence and machine learning in mobile apps for mental health: A scoping review.
PLOS Digit Health. 15;1(8): e0000079.
https://doi.org/10.1371/journal.pdig.0000079Sankaran G, Palomino MA, Knahl M & Siestrup G (2022). A Modeling Approach for Measuring the Performance of a Human-AI Collaborative Process. 1212Applied Sciences 12, (22) 11642-11642.
https://doi.org/10.3390/app122211642Venkatesh S, Moffat D & Miranda ER (2022). You Only Hear Once: A YOLO-like Algorithm for Audio Segmentation and Sound Event Detection.
Applied Sciences 12 (7).
https://doi.org/10.3390/app12073293Zhou SM, R. A. Lyons, M. A Rahman, A. Holborow, S. Brophy (2022). Predicting hospital readmission for campylobacteriosis from electronic health records: A machine learning and text mining perspective.
Journal of Personalized Medicine, 2022, 12(1), 86.
https://doi.org/10.3390/jpm120100862021
Almowil Z, Zhou SM and Brophy S. (2021). Concept Libraries for Automatic Electronic Health Record Based Phenotyping: A Review.
International Journal of Population Data Science, Jun 16;6(1):1362.
https://doi.org/10.23889/ijpds.v5i1.1362Alotaibi, F.G., Clarke, N. and Furnell, S.M. (2021). A novel approach for improving information security management and awareness for home environments.
Information and Computer Security, Vol. 29( No. 1)), pp. 25-48.
https://doi.org/10.1108/ICS-05-2020-0073de Pennington N, Mole G, Lim E, Milne-Ives M, Normando E, Xue K, Meinert E. (2021). Safety and Acceptability of a Natural Language Artificial Intelligence Assistant to Deliver Clinical Follow-up to Cataract Surgery Patients: Proposal.
JMIR Res Protoc. Jul 28;10(7):e27227.
https://doi.org/10.2196/27227Eke CS, Jammeh E, Li X, Carroll C, Pearson S & Ifeachor E (2021). Early Detection of Alzheimer's Disease with Blood Plasma Proteins Using Support Vector Machines.
IEEE Journal of Biomedical and Health Informatics 25, (1) 218-226.
https://doi.org/10.1109/jbhi.2020.2984355Fernández-Gutiérrez F, Kennedy JI, Cooksey R, Atkinson M, Choy E, Brophy S, Huo L, Zhou SM (2021). Mining primary care electronic health records for automatic disease phenotyping: A transparent machine learning framework.
Diagnostics, 2021, 11, 1908.
https://doi.org/10.3390/diagnostics11101908Kim DH, Wit H, Thurston M, Long M, Maskell GF, Strugnell MJ, Shetty D, Smith IM, Hollings NP (2021). An artificial intelligence deep learning model for identification of small bowel obstruction on plain abdominal radiographs.
Br J Radiol. 1;94(1122):20201407.
https://doi.org/10.1259/bjr.20201407Morgan K, Zhou SM, R. Hill, R. Lyons, S. Paranjothy and S. Brophy (2021). Identifying prenatal and postnatal determinants of infant growth: A structural equation modelling based cohort analysis.
International Journal of Environmental Research and Public Health 18, 10265.
https://doi.org/10.3390/ijerph181910265Raj ANJ, Zhu H, Khan A, Zhuang Z, Yang Z, Mahesh VGV & Karthik G (2021). ADID-UNET—a segmentation model for COVID-19 infection from lung CT scans.
Peer J Computer Science 7.
https://doi.org/10.7717/peerj-cs.349Surodina S, Lam C, Grbich S, Milne-Ives M, van Velthoven M & Meinert E (2021). Machine Learning for Risk Group Identification and User Data Collection in a Herpes Simplex Virus Patient Registry: Algorithm Development and Validation Study.
JMIRx Med 2, (2).
https://doi.org/10.2196/25560Surodina S, Lam C, Grbich S, Milne-Ives M, van Velthoven M, Meinert E (2021) Authors’ Response to Peer Reviews of “Machine Learning for Risk Group Identification and User Data Collection in a Herpes Simplex Virus Patient Registry: Algorithm Development and Validation Study”
JMIRX MED Vol.2 Iss.2 10.2196/28917.
https://doi.org/10.2196/28917Surodina S, Lam C, Grbich S, Milne-Ives M, van Velthoven M, Meinert E (2021) Machine Learning for Risk Group Identification and User Data Collection in a Herpes Simplex Virus Patient Registry: Algorithm Development and Validation Study
JMIRX MED Vol.2 Iss.2 10.2196/25560.
https://doi.org/10.2196/25560Tsang G, Zhou SM, Xie X. (2021). Modeling Large Sparse Data for Feature Selection: Hospital Admission Predictions of the Dementia Patients Using Primary Care Electronic Health Records. In
IEEE Journal of Translational Engineering in Health and Medicine, vol. 9, pp. 1-13.
https://doi.org/10.1109/JTEHM.2020.3040236West C, Woldman W, Oak K, McLean B & Shankar R (2021). A Review of Network and Computer Analysis of Epileptiform Discharge Free EEG to Characterize and Detect Epilepsy.
Clinical EEG and Neuroscience 53, (1) 74-78.
https://doi.org/10.1177/15500594211008285Zhou, SM, F. Chiclana, R. I. John, J. M. Garibaldi, and L. Huo (2021), Type-1 OWA Operators in Aggregating Multiple Sources of Uncertain Information: Properties and Real-World Application in Integrated Diagnosis.
IEEE Transactions on Fuzzy Systems,.,., vol.29((, no.8):):, pp. 2112-2121.
https://doi.org/10.1109/tfuzz.2020.29929092020
Alotaibi F, Clarke N & Furnell S (2020). A novel approach for improving information security management and awareness for home environments.
Information and Computer Security, 113, 102557.
https://doi.org/10.1108/ICS-05-2020-0073Babiloni C, Blinowska K, Bonanni L, Cichocki A, De Haan W, Del Percio C, Dubois B, Escudero J, Fernández A & Frisoni G (2020). What electrophysiology tells us about Alzheimer's disease: a window into the synchronization and connectivity of brain neurons.
Neurobiology of Aging 85, 58-73.
https://doi.org/10.1016/j.neurobiolaging.2019.09.008Barakabitze AA, Mkwawa I-H, Hines A, Sun L & Ifeachor E (2020). QoEMultiSDN: Management of Multimedia Services using MPTCP/SR in Softwarized and Virtualized Networks. IEEE Access 1-1.
https://doi.org/10.1109/access.2020.3039953Blesse C, Kharko A, Locher C, DesRoches CM, Mandl KD (2020) US primary care in 2029: A Delphi survey on the impact of machine learning
PLOS ONE Vol.15 Iss.10 10.1371/journal.pone.0239947.
https://doi.org/10.1371/journal.pone.0239947Bradwell HL, Johnson CW, Lee J, Winnington R, Thill S & Jones RB (2020) Microbial contamination and efficacy of disinfection procedures of companion robots in care homes.
PLOS ONE 15, (8) e0237069-e0237069.
https://doi.org/10.1371/journal.pone.0237069Bradwell HL, Winnington R, Thill S, Jones RB (2020). Longitudinal diary data: six months real-world implementation of affordable companion robots for older people in supported living.
ACM/IEEE INT CONF ON HUMAN-ROBOT INTERACTION.
https://doi.org/10.1145/3371382.3378256de Cock C, Milne-Ives M, van Velthoven MH, Alturkistani A, Lam C & Meinert E (2020) Effectiveness of Conversational Agents (Virtual Assistants) in Health Care: Protocol for a Systematic Review.
JMIR Research Protocols 9, (3) e16934-e16934.
https://doi.org/10.2196/16934Gianni, M. Uddin, M. S. (2020). Role and task allocation framework for Multi-Robot Collaboration with latent knowledge estimation.
Engineering Reports. John Wiley & Sons Ltd.
https://doi.org/10.1002/eng2.12225Meinert E, Lam C, van Velthoven M (2020) Developing a blockchain-based supply chain system for advanced therapies: study protocol.
JMIR Research Protocols Vol.9 Iss.12 10.2196/17005.
https://doi.org/10.2196/17005Milne-Ives M, de Cock C, Lim E, Shehadeh M, de Pennington N, Mole G & Meinert E (2020) The effectiveness of artificial intelligence conversational agents in healthcare: a systematic review.
Journal of Medical Internet Research 22, (10), Iss.10 10.2196/20346.
https://doi.org/10.2196/20346Miranda E, Daly I, Nicolaou N, Williams D, Hwang F, Kirke A & Nasuto SJ (2020) Neural and physiological data from participants listening to affective music.
Scientific Data 7, (1).
https://doi.org/10.1038/s41597-020-0507-6Nilashi M, Ahmadi H, Manaf AA, Rashid TA, Samad S, Shahmoradi L, Aljojo N, Akbari E. (2020) Coronary Heart Disease Diagnosis Through Self-Organizing Map and Fuzzy Support Vector Machine with Incremental Updates.
International Journal of Fuzzy Systems, 2, 1376–1388.
https://doi.org/10.1007/s40815-020-00828-7Nilashi M, Ahmadi H, Sheikhtaheri A, Naemi R, Alotaibi R, Alarood AA, Munshi A, Rashid TA, Zhao J. (2020). Remote Tracking of Parkinson's Disease Progression Using Ensembles of Deep Belief Network and Self-Organizing Map.
Expert Systems with Applications, 159 113562.
https://doi.org/10.1016/j.eswa.2020.113562Nilashi M, Ahmadi N, Samad S, Shahmoradi L, Ahmadi H, Ibrahim O, Asadi S, Abdullah R, Abumalloh RA, Yadegari E. (2020). Disease Diagnosis Using Machine Learning Techniques: A Review and Classification,
Journal of Soft Computing and Decision Support Systems, 7(1).
https://www.jscdss.com/index.php/files/article/view/224Tsang, G., Xie, X., Zhou, S.-M. (2020). Harnessing the Power of Machine Learning in Dementia Informatics Research: Issues, Opportunities and Challenges.
IEEE Reviews in Biomedical Engineering, 13: 113-129.
https://doi.org/10.1109/rbme.2019.2904488