It is virtually impossible to record waves washing over a real atoll island, because the chances of an extreme event occurring on an instrumented island is very rare – you’d have to be instrumenting at least tens of islands spread across the Maldives and the Pacific to catch it. This scale model will give us the opportunity to run a controlled series of scenarios and monitor with a range of instruments how the island might respond in a variety of present and future sea conditions. Combined with other measurements from the field, we hope it will give us a clear understanding of if – and how – these communities can survive in future.
Professor Gerd Masselink
Professor of Coastal Geomorphology
Coral reefs naturally protect atoll islands from wave-driven flooding, but unfortunately, they are degrading worldwide. This experiment provides a unique opportunity to investigate the efficiency of reef restoration for coastal protection. Up to 150 eco-friendly, complex-shaped artificial reef structures will be installed on the reef of the scale model, and their effect on the waves will be systematically analysed. The large scale of this experiment is essential, as it allows us to get a realistic picture of how water moves through these complex structures, and thus of how the structures influence the wave field and ultimately flooding at the island.
Assistant Professor of Coastal Waves at Delft University of Technology
We have built a scale model of a reef platform with an atoll island in the Deltares Delta Flume. With this unique, experimental facility, we can generate the largest artificial waves in the world, which makes it the perfect place to assess the effect of waves washing over an atoll island. The model is equipped with numerous sensors, which gives us detailed information about the wave heights, velocities and pressures along the reef platform and the overwash over the atoll island.
Project Leader of the Deltares Delta Flume
Natural adaptation of atoll islands to sea-level rise offering opportunities for ongoing human occupation (ARISE)
Coastal Processes Research Group
- beach morphodynamics and nearshore sediment transport
- coastal erosion and storm impacts
- video monitoring of coastal systems
- coastal process modelling
- estuarine processes and evolution.