For the PLoS Biology paper, researchers from Plymouth and the Italian National Research Council’s Institute of Marine Science report on four experiments in which they generated more than 30 million images of over 600 developing embryos.
The EmbryoPhenomics technology aims to extract as much biologically relevant information from every single image as possible and to integrate this into a vast high-dimensional dataset. It enables researchers to capture both how an embryo is responding in real time, as well as longer term changes over the course of days or weeks, providing a powerful understanding of the response of embryos to environmental stress.
The experiments focus on two commonly found and ecologically important invertebrate species – a pond snail (Radix balthica) and a marine shrimp (Orchestia gammarellus).
In one experiment they discovered a predictable increase in movement, growth rates and heart rate in embryos grown in 25°C compared with 20°C. Embryos grown at 30°C – a temperature they routinely experience in their environments – exhibited a fundamentally different developmental dynamic, however with decreased rates of growth and movement decreased, but increased heart rates.
It is extremely important that we understand how global environmental change is affecting the sensitive early life stages of different species as these responses are central to biodiversity.
The experiments also identified points at which the embryos would experience extreme, or lethal, biological responses, with the EmbryoPhenomics technology having the potential to prove an extremely powerful tool allowing us to assess the impact of short-term, environmental changes such as weather-related incidents or pollution.
Researchers believe that while these experiments focussed on two species, the technology has been designed to be versatile and applicable to other species.
Professor Simon Rundle said:
“This is not just about taking a quick snapshot but seeing in detail how organisms put themselves together. The early stages of an embryo’s development are its most sensitive and there are many factors which could lead to organisms not progressing from that phase to become adults. By understanding these in more detail we can begin to build a picture of what we might be able to do to ensure biodiversity is not lost as our climate changes.”